Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors
نویسندگان
چکیده
Here, we present a temperature (T) dependent comparison between field-effect and Hall mobilities in field-effect transistors based on few-layered WSe2 exfoliated onto SiO2. Without dielectric engineering and beyond a T-dependent threshold gate-voltage, we observe maximum hole mobilities approaching 350 cm(2)/Vs at T = 300 K. The hole Hall mobility reaches a maximum value of 650 cm(2)/Vs as T is lowered below ~150 K, indicating that insofar WSe2-based field-effect transistors (FETs) display the largest Hall mobilities among the transition metal dichalcogenides. The gate capacitance, as extracted from the Hall-effect, reveals the presence of spurious charges in the channel, while the two-terminal sheet resistivity displays two-dimensional variable-range hopping behavior, indicating carrier localization induced by disorder at the interface between WSe2 and SiO2. We argue that improvements in the fabrication protocols as, for example, the use of a substrate free of dangling bonds are likely to produce WSe2-based FETs displaying higher room temperature mobilities, i.e. approaching those of p-doped Si, which would make it a suitable candidate for high performance opto-electronics.
منابع مشابه
Field-effect transistors built from all two-dimensional material components.
We demonstrate field-effect transistors using heterogeneously stacked two-dimensional materials for all of the components, including the semiconductor, insulator, and metal layers. Specifically, MoS2 is used as the active channel material, hexagonal-BN as the top-gate dielectric, and graphene as the source/drain and the top-gate contacts. This transistor exhibits n-type behavior with an ON/OFF ...
متن کاملHigh-gain inverters based on WSe2 complementary field-effect transistors.
In this work, the operation of n- and p-type field-effect transistors (FETs) on the same WSe2 flake is realized,and a complementary logic inverter is demonstrated. The p-FET is fabricated by contacting WSe2 with a high work function metal, Pt, which facilities hole injection at the source contact. The n-FET is realized by utilizing selective surface charge transfer doping with potassium to form...
متن کاملGate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states
Articles you may be interested in Evaluation of pulsed laser annealing for flexible multilayer MoS2 transistors Appl. Schottky-barrier lowering in silicon nanowire field-effect transistors prepared by metal-assisted chemical etching Appl. Measurement of low Schottky barrier heights applied to metallic source/drain metal–oxide–semiconductor field effect transistors
متن کاملModeling of Manufacturing of Field-Effect Heterotransistors without P-n-junctions to Optimize Decreasing their Dimensions
It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions framework their system). Due to the optimization, one can also obtain increas...
متن کاملHigh-mobility and low-power thin-film transistors based on multilayer MoS2 crystals.
Unlike graphene, the existence of bandgaps (1-2 eV) in the layered semiconductor molybdenum disulphide, combined with mobility enhancement by dielectric engineering, offers an attractive possibility of using single-layer molybdenum disulphide field-effect transistors in low-power switching devices. However, the complicated process of fabricating single-layer molybdenum disulphide with an additi...
متن کامل